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The theory for thermoacoustic mixture separation is extended to include the effects of a nonzero
concentration gradient. New data are presented, which are in excellent agreement with this theory.
The maximum concentration gradient which may be achieved in a binary mixture of gases through
this separation process is intrinsically limited by the fractional pressure amplitude, by the tidal
displacement, and by the size of the thermal diffusion ratio. Ordinary diffusion further detracts from
the attainable final concentration gradient and can become the dominant remixing process as the
cross section of the duct is increased. Rayleigh streaming also works against thermoacoustic
separation, and an estimate of the molar flux from streaming is giveR0@ Acoustical Society

of America. [DOI: 10.1121/1.1453449

PACS numbers: 43.35.Ud, 43.20.Mv, 43.35[BGK]

I. INTRODUCTION cess. We conclude by describing our experiments supporting
this more complete theory.

Recently, Swift and Spobr(S&S) showed theoretically
how the propagation of acoustic waves through a mixture of
gases in a duct can cause the time-averaged separation IbfiIMPORTANT QUANTITIES
light and heavy molecules along the wave-propagation direc- Since early in the last centufyit has been understood
tion by means OT processes occurring at the bo.undaryllaye{hat application of a thermal gradient to a binary mixture of
The separation is second order in the dynamical variable§ages can yield a gradient in the molar concentrations of the
and can lead to large separation rates and concentration grgsnstituent gases. Ordinary mutual diffusion opposes this
dients. The strength of this separation mechanism dependgermal diffusion process; and for a closed, isobaric volume

both on the properties of the gas mixture and on the phasings 5 mixture, the steady state is reached when
of the acoustic field. Spoor and SWitxperimentally found
VnH:_kTV InT, (1)

that the separation saturates exponentially, and they were
able to generate final concentration gradients as large as 7hereny, is, by convention, the mole fraction of the heavier
per meter for 50-50 He—Ar starting mixtures in a tube ofof the two gases anki; is called the thermal diffusion ratio.
approximately 5 mm diameter. However, the focus of theirFrequently—but not always—thermal diffusion drives the
attention was on the initial rate of separation, before signifiheavier gas toward the lower temperature region, so these
cant concentration gradients had developed, because tltenventions normally lead to positive values fof. For
theory of S&S was limited to that situation. He—Ar, the binary mixture used in our experiments, we use

In this paper, we investigate the separation process in thier=0.38 (1— nH)l'Znﬂ'8 based on a fit to the data of Atkins
presence of a nonzero concentration gradient in order to uret al?
derstand the saturation separation. Several processes work Following S&S, our analysis is based on the notation of
against the separation mechanism of S&S to determine thkeandau and LifShitf,WhiCh accounts for the concentrations
final gradient. Our most important new result is that the sepaof gases by mass fraction instead of mole fraction. Hence, we
ration in a duct is intrinsically limited by the square of the define the heavy mass fractianby
ampl!tude of d|splfa(.:emenlt Qf the gas in the acoystlc wave. In o= My /Mayg, )
addition, the remixing arising from concentration-gradient- o
driven mutual diffusion is typically a large effect. Although Where the molar-average massg,q can be expressed in ei-
we do not study the effect thoroughly here, Rayleigh streamter Of two ways
ing may also contribute a substantial remixing flux, depend- Mayg= MMy +(1—=ngy)mg, 3)
ing on the shape of the duct and on the intensity of the
acoustic field.

In what follows, we first introduce and define the impor- gnd m, andmy, are the molar masses of the light and heavy
tant physical and mathematical parameters in this problemyases, respectively. In order to write the mass flux density
We then present a heuristic argument, assuming standin@rom diffusion in terms ofc rather tham, we must use the
wave phasing, for the intrinsic limitation of the separationscaled thermal diffusion ratio
process. In the next few sections we extend the S&S theory
to lowest order in the concentration gradient and find the
expression determining the saturation of the separation prawhich is Eq.(44) in S&S, in place ofk;.

Mag=cCcmy '+ (1—c)m_*, 4

k',l': kTmLmH /mezwg, (5)
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The effect in which we are interested occurs via acoustidll. A SIMPLE BUCKET-BRIGADE MODEL
processes within the thermal and viscous boundary layers. To . .
study this analytically, we consider the gas in an acoustic &S showed that the time-averaged separation flux
duct, with sound of a single frequendypropagating along alo_ngx is due to o_scnlgtlng motion and concentration, Wlﬂ_‘l
the axis of the duct. The wavelength=a/f, wherea is the suitable time phasing, in the gas about a thermal penetration

speed of sound in the gas mixture, is taken to be much largé&fePth from the wall of the duct. These phased oscillations
than all other length scales in the system, including the trang£ONStitute a bucket-brigade shuttling of one component in the
verse dimensions of the duct characterizedrhy the hy- X direction and the other component in thec direction. In

draulic radiu€ The thermoacoustic variables can be eX_order to depict this process it was useful to consider the
panded in harmonics to first order behavior of the gas at a fixed location in a duct, but for

describing saturation qualitatively in this section it is easier

p=pm+R[pi(x)e'“"], to follow the processes in moving parcels of the gas. To gain
intuition about the most interesting mechanism that causes
T=Tph+R[T(x,r)e'], saturation of the time-averaged concentration gradient in the
duct, we consider the caricature of oscillations with standing-
p=pm(X)+Rp(x,r)e" "], (6)  wave phasing shown in Fig. 1.
B Lot In this crude approximation, the time-averaged separa-
u=Rluy(x,r)e ], tion flux may be carried by the gas parcel approximatly

from the wall, because this parcel may experience both os-
cillating concentration and oscillating motidgwith suitable
wherew =27 is the angular frequency of the acoustic field Phasing. Hence, the time-averaged separation flux will stop
andx is the longitudinal coordinate along the acoustic ductWhen the concentration oscillatiop, | is zero in the gas
The parameter stands for the radial coordinate if the duct is Parcel approximately, from the wall. This will occur when

a circular tube, for the coordinagenormal to the duct's wall  the oscillating diffusion between that parcel and those adja-
in the boundary-layer approximation, or for both coordinatescent to the wall, indicated by the wide arrows, is also zero.
perpendicular toc in ducts of lower symmetry. Symbols, According to Eq(58.11 from Landau and Lifshitz the

T, p, u, andc are the pressure, temperature, mass density, diffusive mass-flux density vector is

component of velocity, and concentration of the heavy com-

ponent, respectively. The thickness of the thermal boundary = —pD
layer is the thermal penetration depth

c=C(X)+R[cy(x,r)e'],

!

Ky
Vc+ ?VT . (12

_ _ Using Fig. 1 to estimate the values on the right-hand side of
S,.=2k/ =2kl w, 7
= @PCp Vardw @ Eqg. (12 when the transverse component of the flyx 0,

wherek is the thermal conductivity of the gas, is the and hencgc,| =0, for the parcel a distanc, from the wall

isobaric heat capacity per unit mass, ands the thermal Yields

diffusivity. Similarly, the viscous boundary layer is defined ,
Y Y iy :Cm—(Cm+|X1|de/dX)+ﬁ|T1|

by the viscous penetration depth 0 5 s (13)
K m K
8,=\2ulwp=+2vlw, (8)
so that
where u is the viscosity andv is the kinematic viscosity. ,
Another fundamental length scale involved in the mixture dﬁ Nﬁﬂ (14)
system is the mass diffusion length dx ) T xal”

6p=2D/w, (9)  Finally, usingT;=p;/pnC, andx;=(u;)/1w, where( ) de-
notes the spatial average over the duct’s cross section, this
whereD =D, is the mutual diffusion coefficient for the bi- pecomes
nary mixture.
It is convenient to define two ratios of the length scales dﬁ
that appear repeatedly in the analysis. The Prandtl number is dx
defined as

y—1 ,|P1| w

Ty M Tl 13

We can expect that the quantitative theory developed in the
o=(5,16,), (100 next sections will be in qualitative agreement with Etf),

so that the thermoacoustic mixture separation can only occur

and describes the relative extent of the viscous and therm@\'/hen the concentration gradient is less than approximately

effects. This ratio is<2/3 for binary mixtures of monatomic (dc,./dX) For future convenience. then. let us define
m sat* 1 ll

ideal gases. A second ratio is (dcy/dx) s, exactly according to Eq15), and we also de-
L=(8,/6p)?, 1y  fine

which compares the relative importance of thermal conduc- — dcm/dx

. T I'e - (16)

tion to mass diffusion. (dcyn/dX)sar
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tions of two-component fluid dynamics. We will continue to
assumedT,,/dx=0 as in S&S, because our result will be
complicated enough even in the absence of a temperature

g

é

o

Z gradient.

Z From S&S Eqs(17)—(18) for the convection and diffu-

Z sion ofc,

/ ac 1_ Dkt

Z Gt U Ves - oV=V DVeH| == VT, a7)

)

Z we now obtain

é c +ﬁdﬁ—5—2D Vic +k—+V2T (18
Yhlwdx 20 7 T, )

to first order in the oscillating quantities, Whe‘Vé denotes
the parts of the Laplacian belonging to the transverse coor-
dinates.

We now write Eq.(20) from S&S for the first-order
oscillating heat transfefor diffusion of entropy in the gas
mixture

dsn
Pme(lw51+ ula)

,[ 99 79
ol el Tl
p,T
whereg is the Gibbs free energy per unit mass, and with the
divergence of the first-order oscillating mass flux

Y

LRI boundary

"5 =KkVZT,— V-ig, (19)

p,c

NN

.
>

gl de
m

----- Vi = _lwpmcl_Pmulﬁ! (20)

Tl

according to Eq9.17) and(18) above. We cannot discard the
ds,,/dx term, as the gradient in entropy will not be negli-
gible when there is a concentration gradient along the duct.
Instead, we use the identit22) from S&S to write

y ds, ¢, dTy, (ag) dc, 1 dpy
p

1,

X T, dx \aT - - @D

. dx pmT, dX

FIG. 1. lllustration of five typical parcels of gas, to guide the intuition about '

the saturation concentration difference. The three parcels abutting the walfhe first term on the right-hand side is zero, because of our
are immobilized py wscpsﬂy_. The parcel farthest from the w_aII, shown at.theassumption at the outset of zero temperature gradient. The
two extremes of its motion, is too far from the wall to experience oscillating .

temperature gradients or oscillating concentrations. The intervening parcelaSt t€rm is zero too, because we assume that the mean pres-
also shown at the two extremes of its motionight experience concentra-  sure is constant throughout the duct. If we eliminstdérom

tion oscillations|c,| due to oscillating thermal diffusion, indicated by the (19) by means of S&S'422), substitute our21) into (19),

wide arrows. The filled wide arrows represent diffusion of the heavy com-g ., qefine for future convenience the dimensionless quantity
ponent, while the open arrows represent diffusion of the light component.

The thermal diffusion ratid; is assumed to be positive, as for the He—Ar (k’ )2 9 -1 k2
mixtures in our experiments. The heavy component diffuses toward the = T _g _ Y T (22)
isothermal boundary during compression, provided that the longitudinal cme Jc - 0% nH(l—nH)'
concentration gradierdc,,/dx is not too large. In this boundary-layer pic- P
ture, we denote the transverse coordinatey by place ofr. as in S&S Eqs(24) and(45), we finally obtain
2
I'; is always real and may loosely be regarded as a figure of T,= P1 + ﬁcﬁ 2V2T1+ ﬂ dﬂul. (23)
merit for the progress of the separation process toward pPmCp K7 21" lwky dx
saturatiorf

This differential equation differs fromi23) of S&S only
through the appearance of the new, final term on the right.
Up to this point we have avoided specifying our duct
We can derive the lowest-order theory for the saturatiorgeometry, and we can proceed a bit further in that mode.
of thermoacoustic separation by preserving terms containingirst, note that we can writa, in terms of its average over
the longitudinal concentration gradiedit,,,/dx in the equa- the cross-sectional arda,) as

IV. THE FIRST-ORDER THEORY
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(uy) also interpret the higher-order differential operatorsVefs
Uy=7—¢ (1-h,), (24 _V,v? and V/—-V?2V2, consistent with the derivation of
: these equations.

where (1-h,) describes the velocity profile as a function of For the boundary-layer limit
position on the cross section, afig=(h,). Equations(18)
and(23) constitute two coupled partial differential equations h —e-@+0Y/8, and f :(1— )6,
in T, andc;. Solving Eq.(23) for ¢, inserting the result in v v 2r,
(18), and using Eq(24) yields

(28)

while for a circular tube of radiuR, the oscillating velocity

P 1 (824 5214 6) VT, 4 252 i u; of Eq. (24) is expressed in terms of
1= T 5 L% D r'l r'1
Py 2! ‘ 3[1-1)r/5,]
8% (uy) eTp dey_, " I[(1—1RIS,]
T2 I, ekl dx @9 (29

2J,(-DR/S,]

which is similar to Eq(27) of S&S. This can now be solved fV:JO[(| —1)R/S5,J0—1)RIS,’
for T, as a function of the coordinates. Because of the new o _ _ _
term appearing on the right, this inhomogeneous differentiaYVhere theJ; are cyllndrlca! Bessel functions. Direct substi-
equation forT; is driven by the concentration gradient and tution shows that the solution to E@5) must be of the form
uq, as well as byp;. D

To determine a solution fof,, we must apply appro- T,= !
priate boundary conditions to our fourth-order differential PmCp
equation. One boundary condition is provided by assumingyith the same length scales for tlyeor r dependence as
the wall of the duct to be isothermal, so the{=0 at the  found by S&S
wall. The wall is generally isothermal because the solid has a
much higher heat capacity and thermal conductivity than thes2p =32 62[ 1+ (1+¢)/L+\[1+(1+e)/L]?—4/L], (3
gas. A second boundary condition can be taken by requiring

[1-Bh,—Ch,p—(1-B—C)hp,], (30

that there be no net flux of concentration into the wall 05, =30 1+ (1+e)/L—\[1+(1+e)/L]?~4IL]. (32
_ Ky For the boundary-layer calculation, we choose all éeeto
rlwan| VrCat == ViTe| =0 (26)  be positive, in order to satisfy the aforementioned require-
m wall ment that the solution remain finite §s-. For the cylin-
Inserting(23) and (24), this becomes drical tube, we can choose tl#s to be positive because the
e functionsJ, are even; the/ solutions to Eq(25) have been
0=|(1+&)V,T,— _ers-l-l dllscarded. pecause they.dlverge at the center of the tube. The
21 final coefficient - B— C in Eq. (30) has been chosen so that

the isothermal boundary conditioff,|,,.;=0, is explicitly
(uy) &Tm dep 27) obeyed. Substitution into E¢25) leads to

1—f, 1wk} dx

vh,

wall Ief'(’s o

For some duct geometries, such as the infinite slab, these two B= 1-f, (1-0)(1— aL)—saFC’
boundary conditions specify four equations, so that the solu- _ o _
tion is uniquely defined. For the boundary-layer and circularwhere 6 is the phase of the acoustic impedance, i.e., the
tube geometries we consider, though, these conditions prgthase by whictp, leadsU,. Next, substitution into the un-
vide only two equations and it is necessary to impose thélsual “zero transverse flux” boundary conditi¢®?) yields
additional restriction that the solution be finite everywhere
o the duet YWNETE 40, (8% 68, — 1) = BIf (o= 1) o+, (6483, —1)]

To proceed further, one must now specify a geometry for fo( 8285, —1) = fp( 85/ Sep—1) '
the duct. The boundary-layer solution is of limited practical (34)
mterest,. but it yields a relatively simple expression for the), the boundary-layer approximation, this simplifies further
separation flux and demonstrates the main features of theyy
moacoustic separation which are present in any geometry. In

(33

the boundary-layer limiftransverse duct dimensiosssé,), o—1 S,

we haveV?=g%/9y?, with y the direction perpendicular to CpL=Csggl 1-B| 1+ Vo JEom—s ) : (35
the boundary. We will also investigate the problem for a 7 b “Dx

circular tube of arbitrary diameter: the algebraic manipula-whereCg is defined as in Eq(33) of S&S

tions are almost identical, except for the presence of some

normalization factors that prevent simplifications from oc- \/EﬁKD—SDK

curring. In the circular tube, V,—dldr and Vrz S&SZ(1+\/E)(5KD—5DK). (36)

—(1/r)alar(r alar), and we ignore thep derivatives be-
cause of cylindrical symmetfyIn Egs. (25) and (27), we  One sees immediately that fdic,,/dx—0,
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B—0 and Cg —Cgs.- (370  where the odd-order terms are zero because the time average

. of a periodic function is zero.
So, our expression returns the results of S&S when the con- N . .
SettingNy = —N_ 1, yields a mean velocity

centration gradient is zero. Whether or not the concentration
gradient is zero, Eq(30) for the complex temperaturg, Maug My — ML) iy
reduces to the ordinary thermoacoustic result as the thermal u,= —
diffusion ratio is reduced to zero, just like the expression

(30) of S&S. Whenk;—0 and, thereforez—0, it follows  Formally, this should have been included in E6), but we

thatB—0; and, as befor¢i) if L=1, thend,p— 6., dp.  argue here that it is negligible. There are three ways in which

—6p, and C—1, and (i) if L<1, thend,,—dp, dp. u,, could potentially modify the results of acoustics as de-

—6,, andC—0. rived here. The first-order continuity equatitt8) would, in
Finally, the complex concentratian can be determined principle, gain a termy,,/1w)dc, /dx, but this contribution

by inserting Eq.(30) for T, into Eq. (23), with (24) and s of order 6,/\ smaller than all the other terms in that

_— (42
mymyg Pm

either (28) or (29) approximate equation and can be ignored, as long &
p, K 52 much larger than any other length scale in the system. The
Ci=— - ( — _}) h.o equation for heat transfdfl9) would also gain a new first-
PmCp &Tm 9D order termp,, TUny, (ds; /dx), but this contribution is again

52
+(1—B—C)(1—TK
5DK

1 of order 6 /N smaller than the other terms in that equation.
hp,+ B( 1- —)hv Finally, in our expression below for the second-order mole
e flux (45 there would emerge a new term
(A2)u R[(P1cq)], but this portion of the flux is approxi-
. (38) mately u,/a times smaller than the main term
(A/2)pR[(cqly)]. In our experiments, we always had
Notice in particular the fourth term in this equation, which is Un/a<5x 108 so that theuy,(p,c;) contribution to the
proportional to ¢ u;/1w)-dc,/dx=—x,-dc,/dx where flux was negligible. We thus can safely ignore thig from
x, denotes the complex first-order oscillating particle dis-steady diffusion, a mean flow which the experimenter does
placement(i.e., the tidal displacementin other words, this not directly adjust, in our harmonic expansion of the velocity
term describes the change in concentration inside a statiot(X,r) in Eq. (6). Further, we note that the arguments above
ary control volume due to the flow of gas into this volume hold identically for an externally imposed steady flow veloc-
from a point abouk, away along the axis of the tube, where ity U, . In that case, an arbitrany,, will not affect the mole
the mean concentration will generally be different whenfluxes associated with the acoustics, provided thaia.
dcy,/dx#0. This portion of the oscillating local concentra- Only the zeroth-order mole fluxes EqR9) and (40) will
tion, call it c,;, becomes comparable to the other terms aghange through the addition of this imposggd to the mean
the concentration gradient approaches its saturation valugelocity from Eq.(42), and the mole fluxes measured in a
However, c,; does not ultimately contribute to the time- frame moving with velocityu,, are the same as the mole
averaged transport of concentration, because it is exactly 9¢tuxes when the applied,=0.

PmCp (uy) STn: d&(l—h,,)
p1 1—f, 1wks dx

out of phase from the conjugate velocty. Using Eqgs.(42) and(12) (with dT,,/dx=0) in Eq. (39
yields
\ _ de Mavg
V. THE SEPARATION FLUX THROUGH SECOND Nym= —pADW mm (43
ORDER LTH

Next, we seek the time-averaged mole flux of the heav;}cor the zeroth-order diffusive molar flux of the heavy com-

component along thex axis, through second order. From ponent. Using Eqs2) and(3), this can be recast in the more

Landau and LifshitZ,the mass-flux densities apeu+i and familiar form

p(1—c)u—i for the heavy and light components, respec- ) dny

tively; this is necessary in order to preserve the definition of Ny ,=— NADW, (44)

u as equal to the momentum of a unit mass of the gas. The

mole fluxes of the two components are therefore whereN is the total number of moles per unit volume. Un-

like the thermal diffusion ratidy [cf. Eq. (5)], the diffusion

Nu=A(pcu+ij)/my, (39) constantD is the same for either measure of concentration,
and ny or c. This ordinary diffusion, driven by the concentration

: I gradient along but independent of the acoustic field, always

NL=A{p(1—-c)u—i)/m, (40 works against the molar flux of thermoacoustic mixture sepa-

wherei is thex component of and the overbar denotes the fation derived next. _
time average. For the equimolar process of interest to us, USing Eq.(39) to write all possible second-order terms

Ny=—N, . Expanding Eq(39) yields for Ny 2 yields a sum of many terms, each of which can have
_ _ _ _ factors with subscripten, 1, and 2. The terms containing,
Ny=Ny m+ Ny o+ Ny g+, (41) are negligible at this order, as argued above. Théerm,

J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 D. A. Geller and G. W. Swift: Saturation of thermoacoustic mixture 1679



proportional toDdc,/dx, is negligible compared tcNH m  Ap

for the non-negligibledc,,/dx of interest to us. This leaves Tm[<C1U1>]

us with simply

2

A 1 k-,|—/8 plol ~
Ny 2= m 9‘{[<01U1>]+_M2, (45 == R —|C (ho(1=h,))
2 Cplm 1-f, kD
where M,=A R[(p,U3)]/2+Ap(u, 0 is the net second- 52

order mass flux, and is the cross-sectional area of the duct. +(1-B-C)
Using N, = — N, again, this time at second order, and again
neglectingi, gives
o—1 ~
M,=My A(1—m, /my). (46) +BT<hv(1—hv)>”- (48)

Combining Egs.(45 and (46), we finally have for the
second-order mole flux of the heavier component

_1) <hDK(1_EV)>

DK

The thermoacoustic mole flux from Eg€7) and (48), plus
the mole flux from diffusion given above in E¢44), was
o Abm integrated using the Bessel-function forms for the and is
NH’ZZW T%[(Clﬁl>]. (47 compared with the data in Sec. VII.
HL Further progress can be made in the boundary-layer ap-
Using EQgs.(38) and (24), along with the definition of proximation. Making use of the integral identit47) from
volumetric velocityU,=A(u,), we can write S&S, we calculate

|
Apm 5¢ kile [ a0y 52\ (808~ o) =1(5,016,+ o)
—R[(cUy)]= R -
o THemI= ¢Tm | 1-F, 0 & (8% 62+ o)
5%1() (5DK/5K_ \/;)_I(ngléK—’_ \/;) 1/o0-1
+(1-B—Cg) ~B- (49)
5% (83,18%+ o) Vo
|
in place of S&S’s intermediate resu(#8). If we taker,,  where
> §,., this portion of the mass flux can again be coerced into \/— \/—_ \/— S5t ]S
a compact form similar to S&S'649) to first order ind/ry, e IVL(Oun /0, O K), (51)
A s K (1+VU)[(1+0o)(1+oL)+e0]
Pm TV = 2 T 0
2 eI g o Felpl ool o oL ot b0l 50
stand— )
~ T 1+VL)[(1+ 1+ol)+
+ Faan@lP1011+ Forad | U T}, A+ VDIAT o)1+ ob)+eo)
(50 as before, and we additionally define
|
VoL (1—6?)(1+ L) +eo(JL—1)+[(0?—1)L+eaL](8.p /5, +5DK/5K) 53
grad—

(1+\/—)[(1+0')(1+0'L)+80'][(1 o)(1-oL)—¢eo]lo

representing the effect of the building gradient. We finallyn, for He—Ar mixtures; in Fig. 2 we reproduce those two

arrive at curves and include the correspondikgFg,q, Which is of
comparable magnitude and also goes to zern, g0 and
X _ Syl ke KUy ny=1. Equation(54) shows that, neglectin§ly, ,, satura-
M2 4y RuTm 007 tion of the separation procegése., Ny ,=0) occurs at
X[ Firay €SO+ FgiangSin 0+ F graglc] (54)
in the boundary-layer limit, wherR,;, is the universal gas r.=-— FurayCOSO+ FstandSin o (55)

constant. S&S plottett+F,, and ktFganq VS mole fraction Fgrad
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0.000 (@) (> (b)
-0.005 - - . streaming
L —M,(r)
K Eog 2s . dc,, dx 1
Stane m C + _—m ==
0.010 |- - < fi . m™dx 2
T m2,s,w T >
0.015 ko F diffusion
LT_T' -O. — T L 'grad ] |(I’—d|’/2)—> ——I(r+dl’/2) g
- - 2
~ -0.020 - ----- ._/?_/ T - deI’ r+dr/2 %
Q
&) oo tens
-0.025 |- . — (x,r) dx 2
kT Fn'av C >
-0.030 |- —
FIG. 4. (a) For laminar flow, the streaming mass-flux density is parabolic in
-0.035 \ \ ‘ ‘ the tube, except within the viscous boundary lagrezgligibly thin in this
0.0 02 0.4 0.6 08 1.0 figure), where it must approach zero at the wall. For a duct closed on both
gy ends, the mass-flux densifiy,(r) averages to zero over the cross section.

) ) o (b) In the steady state, the net streaming flux of the heavy component into a
FIG. 2. Comparison of the three geometrical prefactors describing the sepdixed volume in space, centered on coordinates)( is balanced by the flux

ration flux for He—Ar. of heavy mass out of this volume by diffusion.
which is of order 1 as we came to expect at the end of Sec. R 8, pmlU1|? Vol dny 57
1, with details shown in Fig. 3. H2 o 4 M wA ax
. 1++oL)(1+oL X
Simply by substituting in the definitioflL6) for I'., Eq. h Mg ( oL)(A+ol)

(54) can also be written as This is identical to theU,|? term in Eq.(56), if our Fg,qis

5 . evaluated withe =0. Although ¢ is often small, Watson’s
: « Y1 T . neglect of it is not strictly valid. Mass diffusion and heat flux
NH,2:4__ﬁlplnuluptravCOSB"' FstandSin 6] g Y

h vy univ! m

are inextricably linked in mixtures, as is most easily seen in
2 our Eqg. (23) with p;=0, and so oscillating temperature
ﬁ Pl Y4l dny (56) should not necessarily be neglected in the problem Watson
4rp MaygoA 9% dx - considered.

In this form, it is apparent that the new effect always opposes

mixture separation, becau$g,,4<0, and hence this term’'s v|. REMIXING BY RAYLEIGH STREAMING
contribution toNHvz always opposesin,/dx. Being inde-
pendent ofpq, this term represents a mixing phenomenon
occurring in any laminar oscillating flow of a mixture in a
duct. Watsol studied this problem in great detail, giving
results for arbitraryry,/8, in circular and two-dimensional
“slab” ducts. In our notation, Watson’s boundary-layer result
is

Rayleigh streaming provides another mixing process
that can work against thermoacoustic mixture separation.
The steady circulation of Rayleigh streaming within the duct
will tend to carry heavy-enriched gas in one direction in one
part of the duct’s cross section and light-enriched gas in the
other direction in another part of the duct’s cross section, as
illustrated in Fig. 4, thereby mixing the separated gases. For-
tunately, lateral diffusion of mass between these counter-
3.0 flowing streams will tend to reduce the net mixing, and will
be most effective at doing so in small ducts.

We have found no citations in the literature regarding
Rayleigh streaming in a gas mixture, including the effect of
nonzeroe on T, and indeed this calculation appears very
challenging. Hence, here we will provide only an order-of-
magnitude estimate in boundary-layer approximation, in a
circular tube, to get a rough idea of the magnitude of this
effect and its dependence on key variables. The order of
magnitudé?® of the second-order, streaming mass-flux density

!nd/}?gd—/ _mz,s,w just outside the boundary layer at the wall of the tube
is

05| |
Mysw™|Paf[(us)|/a%. (59)

005 03 o0 o8 08 o This mass-flux density typically has a periodic dependence
g on the phase betwegn and(u,), and hence will be zero for
some phasing, but we ignore this issue here. For laminar
FIG. 3. The figure of merit for separatidh, for Ny, ,=0, as a function of flow, the mass-flux-density distribution over most of the tube
Ar mole fraction in He—Ar mixtures fop=180° andg=270°. is then given by

J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 D. A. Geller and G. W. Swift: Saturation of thermoacoustic mixture 1681



My (1) =My (2r2/R>—1), (59 intrinsic remixing described by thigJ,|? term at the end of
' a Eq. (56). Using the simple identitiep,a’=yp,, and A
if we ignore the complicated details of haw, s goes to zero = 7R?, we obtain
from the edge of the boundary layer to the wall itself and
insist that(r, s)=0 for our closed system. This distribution Ny sstream 1 ML R |pyf?
of mass-flux density will tend to carry gas enriched in one 5 2 22"
component in one direction in the center of the tube, where Nintingic 12 Mavg Foracds 5 7" Phn
r<R/v2, and gas enriched in the other component in thewith Fg,q and m_ /m,, of order unity and, typically,
other direction in the rest of the tube. |p1|/pm NO larger than approximately 0.1, we see that it is
In the absence of mitigating factors, these two counterprobably necessary to kedp less than 105 if we want to
flowing enriched-gas streams could be imagined as flowingeep the mixing effect of streaming acceptably small. For the
independently along the entire length of the tube, effectivelyexperiments described below, we always hRve4.8 5, and
carrying light-enriched gas all the way from the “light” res- R<4.55,, and|p,|/p,,<0.03, so we anticipate no signifi-
ervoir at one end of the tube to the “heavy” reservoir at thecant contribution from streaming. However, we must keep in
other end of the tube, and vice versa. Such mixing might benind the approximate nature of E¢58). This is only a
catastrophically large. Fortunately, for the experimental conrough estimate, and other circumstances can easily violate
ditions of interest to us here, these two counterflowingthe approximations leading to E(5).
streams have plenty of time to exchange significant mass
with each other via diffusion, very analogous to the way heat
is exchanged between fluid streams in a counterflow heaf!l: COMPARISON WITH EXPERIMENT
exchanger, so the remixing effect is greatly reduced. The  The mole flux expanded to second order in the acoustic
characteristic transit time for streaming the full lengtbf  \ 5/iaples is seen from Eqgtl), (44), and(56) to be linear in
the tube ppl/Mys v, is 10 to 100 times larger than the lateral {he concentration gradiemtn,, /dx. The contribution from
diffusion timeR?/D. For a quantitative estimate of the mag- streaming is also proportional wn,/dx, but it was esti-
nitude of the mixing under these conditions, we consider thenated above to be too small to detect under our experimental
steady-state concentratian,(x,r) in a control volume at conditions. Considering terms through second order, then,
some fixed locationx,r) in the tube. The steady-state con- we can calculate the saturation gradient easily by setting
centration is maintained by the competition between axiay, —0. For example, if the duct is so narrow that ordinary
streaming flow along the concentration gradient and radiakjiffysion can be neglected, one finds from E§6) that the

(65

diffusion, obeying the equation final separation in the boundary-layer limit is a sinusoidal
' den(x.r) ) 1d dexr) . function of the phasing
Mos() —gx PP v ar™ —ar (60 dny  y—1 wkeA [py| FuayCOSO+Fganesin
dx U F ‘
We assume that the diffusion is effective enough that 4 P U4l grad (66)

dc,,/dx can be regarded as independentrpfso that this
equation can easily be integrated when &§) is substituted
for my4(r). The result is

Although the boundary-layer approximation yields the
most compact expression for the separation flux, the expres-
sion remains qualitatively the same regardless of the duct
geometry. We have therefore used our circular-tube calcula-
' (61)  tion from Sec. V to calculate the expected final separations

corresponding to the two tubes studied in our experiment.
with E anr-independent constant of integration that we haveThe narrower of the two tubes described below was chosen

no need to evaluate. Then, the mixing flux can easily beg thatNH,m andNH,4,streamWOUId be small and the new term

dcy 2

dx

Cm(X,r)=E+ X+

r-nz,s,w i_r
8R?> 4

pmD 4

obtained by integrating the product of E4S9) and(61) from Sec. V proportional tU,|? would be emphasized. The
1 (R wider tube, in contrast, was selected in order to demonstrate
Np 4 strear™ — J' CrnlNps 277 dr (62)  the convergence of the.e>.<act, (_:lrculgr—tube calculation to that
0 of the boundary-layer limit derived in Sec. V.

In order to test our theory experimentally, we used the

12 . L L
m dcp, m2,s,wR4 apparatus presented in Ref. 2. The acoustic field inside the

T 748 dx mypD ©®3  ibe was provided by the compressions of metal bellows
housed in closed reservoirs at either end. The bellows were
K dny my [paf?[(up)|’R? (64) driven by independent linear motors, so that we could create

arbitrary phasings and amplitudes in the sound field. Two
ducts were studied, the first of which was a copper tube 4.75
where ther-independent terms in E¢61) disappear in the mm in diameter and=0.914 m long, driven at 10 Hz with
integration, and the final step simply requires substitution obressure amplitudes as high as 2.5 kPa. The second, wider
Egs.(2) and(58). duct was a stainless-steel tube of 1.52 cm diameter and 0.912
To judge the seriousness of the threat imposed by thign length, driven at 15 Hz at amplitudes up to 1.25 kPa. The
fourth-order effect, we can take the ratio Nﬁ,z;,sneamto the  sample was a 50—50 mixture of helium and argon at room

T 48 dx m2 a’pD

avg
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FIG. 6. The saturation value of the concentration gradient as a function of
4 _ specific acoustic impedandg| for fixed |p,||U,| and fixed phasing. For
(b) the 4.75-mm tube,p,||U,|=0.05 W andd= —45°, while for the 1.52-cm
tube|p,||U;|=0.1 W andf=12°. Points are measurements, and lines are
-1‘80 1éo circular-tube calculations.

0 (deg)
The first verification of our circular-tube calculation for
FIG. 5. Dependence of final separation on the phasing betweandU, . bi di b . . v d
(a) Data for the 4.75-mm tube are scaled|Zj=70 MPas/n®. The solid fan arbitrary-diameter tune was in experimentally aemonstrat-
curve is generated from an exact calculation for this circular tube and ining the calculated dependence on phdséor the narrow
cludes the effect of steady diffusion from Eg4). The dashed curve is the Cy|indrica| tube. The data are Compared against our theory'

boundary-layer limit calculation for the narrow tube and also includes theboth in the boundary-layer limit and in the exact case for our
remixing from steady diffusion. The boundary-layer expression is inappro-

priate for the 4.75-mm tube, because the radius of the tube is not muc_geor'net.ry! in Fig. 53) Not all the data for the 4.75-mm tube
greater than the boundary-layer thickness. Although the boundary-layer cain this figure were taken at the exact same valugpef| U]
culgtio'n deviates greatly from_ thg exact calculation and from the data in it:i_)r of acoustic impedancé=p,/U,. Because the values of
periodic phase qependence, |t_st||| yields a reasonable value for the magn||z| varied over an order of magnitude among the data, the
tude of the maximum separatioth) For the 1.52-cm tube, all data were . . . .
taken with || =10 MPas/n? and |p;||U;|=0.1 W. The solid curve is fractlonal_ separation for each pom_t was normalized to an
again the result of a circular-tube calculation, while the dashed curve is théntermediate value of|Z| by multiplying by (70 MPa

boundary-layer limit calculation. For the 1.52-cm tulie;-5 6 and the -S/I’TT?)/|Z|, as suggested by E(66). This scaling is valid if
boundary-layer calculation is fairly accurate. : : :
Ny m andNy 4 syream@re€ much smaller thaNy ,. Neverthe-

temperature and at a mean pressure of 80 kPa, which is ap-

10
proximately the local atmospheric pressure. Complex pres ‘
sure amplitude; o, and pq poromWere measured in the two . ° .475 dia. tub
reservoirs using piezoresistive transducers and lock-in ampli@ 8l ‘ /o i dia. tube N
fiers. From these measurements we inferred the wave in thg
tube to be ot
e
. . 6| .
sink(l —x) sinkx 5 ;ﬁ O -
X)= - + - , o
pl( ) pl,bottom sinkl pl,topsmkl ( 7) =
and 24 " 1,52 em dia. tube .
&
1(1-f,)A dp; =
U (x)=———, 68 |
1(X) wpm dX 68 = 2
wherex=0 at the bottom end of the tube and the complex
wave number is given by 0 ‘ L
0.00 0.05 0.10 0.15

o [1+(y-Df, p,IU,I (W)
k= E 1_—f,, (69)

FIG. 7. The saturation gradient with varyihgy||U,| and with|Z| now held
We evaluata, p,, f,, andf, using properties of the 50—50 fixed. For the narrow tubdZ|=100 MPas/n? and 9= —45°, and for the

P . - . wide tube,|Z|=10 MPas/n? and #=12°. Points are measurements, and
mixture (ignoring theirx dependence fodc,/dx+0), and lines are circular-tube calculations. In the absence of ordinary diffusion or

we use the Bessel-function expressions fiprand f,.. For  acoustic streaming, each curve would be a horizontal line ditg/dx at
the display of data here, we upg andU, atx=1/2. its asymptotic value fofp,||U|—o.
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less, there are smal{(15%) deviations inp,||U,| between In Fig. 7, we show the effect of the diffusion term more
the points, which cause some of the scatter in the datalearly by varying|p,||U,| at constantZ|. Steady diffusion

through the presence of mimm term. Several data points competes more effectively with the separation process when
are also shown in Fig. (6) for the phase dependence of the separation rate is made small. In view of Eg), the
separation in the 1.52-cm tube. In this case, the boundangaturation gradient should begin to decrease again at higher
layer and circular-tube calculations give quite similar resultsvalues of|p4||U,| due to streaming. However, we are not
although the circular-tube calculation is still in better agree-able to attain such large values |gf||U,| in our apparatus,
ment with the data. and other nonlinear effects may set in that limit the applica-
In view of Egs.(41), (44), and(56), one is able to dem- bility of our analysis for such operating conditions.
onstrate the effect of each remixing term by varyjpg||U,|
and|Z| independently, while maintaining a fixed phasing of
the acoustic field in the tube. In order to minimize errors
arising from small deviations in the experimental phasing, This work was supported by the Office of Basic Energy
and to maximize the resolution of our separation measuresciences in the U.S. Department of Energy under contract
ment, we chose that value éfthat yielded the greatest final No. W-7405-ENG-36. The authors are grateful to Phil Spoor
separation for each tube. As seen in Fig. 5, for the narrovand Scott Backhaus for several useful discussions.
tube this angle was approximatety45°, whereas for the
wide tube the maximum was at 12°; the boundary-layer cal-
culation gives the largest gradient at saturation der18°. 1_G. W. Swift, e}nd P. S. Spoor, “Thermal diffusion and mixture separation
Figure 6 shows the nearly linear relationship between final T&hiz"’;c&’é’ft(ﬁo%%‘f”fo%ryl'?gié; (32'(%"]?““ Soc. A6, 1794 (1999;
gradient and specific acoustic impedance for the narrow tubesp s spoor and G. W. Swift, “Thermoacoustic separation of a He—Ar
which is in very good agreement with our calculations. The mixture,” Phys. Rev. Lett85, 1646(2000.
deviation Of the f|||ed Circ'es and their associated curve from 3Thermal diffusion was first discovered theoretically from the kinetic

: : . : theory of gases by D. Enskog and S. Chapman independently. An account
a linear relationship is almost entirely due to the flux from including the original references can be found in K. E. Grew and T. L.

ordinary diffusion Ny : had we heldU,|? constant instead  Ibbs, Thermal Diffusion in Gase¢Cambridge University Press, Cam-
of |p4||U4], the function would be a straight line. bridge, 1952 _ o
The small deviations of the data from the calculated ‘B. E.Atklns, R. E. Bastick, and T. L. Ibbs, “Thermal diffusion in mixtures
) . ~ of inert gases,” Proc. R. Soc. London, SerlA&2, 142-158(1939.
curves may derive from several sources. First, the saturation| p. |andau and E. M. LifshitzEluid Mechanics(Pergamon, New York,
gradient @ny/dx)s, depends omy, which itself varies 1982.
along the length of the tube. We have not calculated the exactThe hydraulic radius;, of a tube or duct is defined as the ratio of its cross

profile ofn along the tube although one can in principle do section to its perimeter. For a right circular cylinder, the hydraulic radius
H ’ is equal to one half of the cylinder radius.

so for our apparatus using the fact that the Sys_tem IS ClosedReaders who are familiar with standing-wave thermoacoustic engines and
so that the total number of moles of each gas is conserved.refrigerators will recognize that the above discussion is similar to the

Second, the thermophysical properties of the gas mixture aredescription of the critical temperature gradient, which differs from
- - Hea : (dey, /dX) 5 by the factorky/ T, .
calculated as in Giacobtfeand may contain errors of a few _

t at our operatin ressure and temperature for th Note that Eqs(15) and(16) may equally well be expressed in terms of the
percen - p gp p emole fraction. Use of Eqg2) and (5) shows that these are equivalent to
50-50 mixture. Finally, no effort was made to accurately g L dn 1
control the temperature of the apparatus, and the ambient _”H) _r- Tﬂﬁ, and T.= Ny 7aX

sat Y Pm U

: d = {dnn/dXwr
temperature of the laboratory varied by as much as 5 °C over' (dn /dX)sa
the course of an experiment. 9For consistency with the prior literature, we denote the longitudinal direc-

. . . tion along the tube bx. Where we refer to cylindrical coordinates, then,
Data for the wide tube are also shown in Fig. 6. The 9 X y
we consider the set to bef, ¢).

_nonlinearity_ of the saturation gradien_t vs_specific acousticog 3 watson, “Diffusion in oscillating pipe flow,” J. Fluid Mech.33
impedance is much more pronounced in this case than for the233-244(1983.
narrow tube. Althoughp,||U,| for these data is twice that of *"W. L. M. Nyborg, “Acoustic Streaming,” irPhysical Acousticsedited by
the narrow-tube data, the area of the wide tube is ten timeg\\- P- Mason(Academic, New York, 1965 Vol. Il B, pp. 265-331.

.. . . . _“F. W. Giacobbe, “Estimation of Prandtl numbers in binary mixtures of
greaterz so that .the remixing flux from steady diffusion is nelium and other noble gases,” J. Acoust. Soc. A6, 3568—3580
proportionately higher. (1994.
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